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REMARKS ON A PRINCIPLE
OF LOCALIZATION

BY
SHMUEL ROSSET

ABSTRACT

We prove that the Brauer class of a crossed product is a sum of symbols iff its
“local” components are. Analogously we show that a solution of the “Goldie
rank conjecture” would follow from the “local” statements; an extension of a
result of Cliff-Sehgal is an easy corollary.

1. Let L DK be a finite galois extension of fields, G = Gal(L/K), and let
f:GXxG—L* be a (non-homogeneous) 2-cocycle. Let A =(L/K,f) be the
crossed product defined by this situation [4]. It is a simple algebra with center K
and dimension n’ (n = | G|) over K. As such it is isomorphic to an algebra of the
type M, (D), where D is a division algebra over (i.e. with center) K. We call r the
rank (or Goldie rank, denoted rk) and if (D : K) = d° then d is the index. Note
that the index of an algebra is an invariant of its Brauer class. The number
(rank) - (index) is called the degree. ‘

For each prime number p dividing n let G, be a (fixed) p-sylow subgroup of G
and K, = L %, the fixed field under the action of G,. Let f, be the restriction of f
to G, X G, andlet A, =(L/K,;f, ). Wecall A, the (p-) local component of A. If
the primary decomposition of [A] in BrK is 2,[D,], where D, is a division
algebra over K with deg(D,) a power of p, we call D, (or [D,]) the (p-) primary
component of A. (Note that the group operation in Br(-) is denoted by +.)

It is obvious that [A,] = resk ;x[A]. Since K, splits D, for g # p we see that

[A;]) =resk x[D,]-

Since cor - resg x = multiplication by (K, : K) we see that [D,] is a multiple of
corg x[A,], by an integer prime to p. In particular they have the same index and
since [A,] =[D, @« K,] and (p, (K, : K)) =1 this is also the index of [A,]. Thus
we can prove the following simple observation:
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Lemma 1. (i) d =11,,. index(A,). (ii) r =11, rk(A,).

Proor. (i) is proved above and (ii) is a trival consequence.
We can use [7] to show

Lemma 2. If K contains a primitive n-th root of 1 (so char K# n) and each
[A,]) € Br(K,) is a sum of cyclic algebra classes (‘“‘symbols” in the terminology of
[7]), then [A] is a sum of cyclic algebras.

ProofF. In [7] it is shown that under these assumptions the corestriction
preserves sums of cyclic algebras.

CororLary. If G is a group all of whose Sylow subgroups are cyclic, then any
crossed product with group G (over a center containing a primitive | G |-th root of
1) is a sum of cyclic algebras.

This corollary was proved, quite differently, by Snider [8].

2. We now give a different proof of Lemma 1, a proof which generalizes to
group rings of virtually polycyclic groups.

Let x be a rational valued function on the category of finitely generated A
modules which is additive, ie., x(M)=xy(M)+x(M") whenever
0->M—>M—->M"—0 is exact (“Euler characteristic’) and normalized by
x(A)=1.1f N is a simple non-zero A module then every finitely generated A
module is of the type N° and it follows from A =N’ (A = M, (D)) that y is
unique and is defined by x(N°)=s/r. We can formulate this:

LemMA 3.  The rank of a central simple algebra is the least common multiple of
the denominators of the numbers y (M) written in reduced form.

We must show that the p-part of r is the number r, such that A, =M, (D(p)).
The dimension of A over D(p) is easily seen to be r;- n, where n,=(G:G,).
The function on A modules defined by M b dimp,(M)/(r2- n}) is additive and
is 1 on A. Hence it is equal to x. Since the simple A, module has dimension r,
over D(p) we see that, in reduced form, the p part of the denominator of
dimp(M)/(r>- ny) is, at most, r,. It remains to show that the p-part of r is
precisely r,. For this it is enough to exhibit an A module M with y(M) = 1/r,.
Let x, be the analogue of x for A,, i.e., x, is the unique function on A, modules
which is additive and is 1 on A,. If V is an A, module the function ¢ defined by
©(V) = x(A @a, V) is such a function, so ¢ = yx,. It follows that if V is a simple
(non-zero) A,-module then 1/r, = x, (V) = x(A &a, V), so we have exhibited
the M with x(M)=1/r,.
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REMARK. Somewhat similar dimension computations appear in: Jacobson,
Structure of Rings, Ch. VL

3. In this section we deal with wvirtually polycyclic groups (also called
polycyclic-by-finite). These are groups which have a subgroup of finite index
which is polycyclic. A general reference is Passman’s book [5]. We will denote
these groups by “ VP-groups™.

A VP-group contains a normal poly-{infinite cyclic} (or poly-Z, for short)
subgroup of finite index [5, p. 422]. The group ring, over a field k, of a poly-Z
group has finite global homological dimension [5, p. 626] and every finitely
generated projective module is stably free. In particular, and using the
noetherianity of such group rings, every finitely generated module has a finite
free resolution.

Let I be a VP group, I a poly-Z subgroup of finite index, and let k be a field.
If M is a finitely generated kI" module let M’ be M considered as a kI module
only. Let0 —» F,, - -+ > F, - F, > M’ — 0 be a resolution of M’ over kI",
where F, is free over kI" of rank f,. We define y (M) = ([:I")"- 2 (- 1)f. This
is independent of the resolution and of the choice of I". It is an Euler
characteristic, i.e., additive on exact sequences, and takes the value 1 on the free
rank 1 module kI'. We define the rank (or “Goldie rank”’) of T to be the least
common multiple of the denominators of the numbers y (M) written in reduced
form (M being an arbitrary finitely generated kI" module).

Assume now that I is normal in I and let I'/I"” = G. For each prime number p
let G, be a p-sylow subgroup of G and I', its inverse image in I'. Let x, (M) be
the Euler characteristic of M thought of as a I', module. Obviously

Xo(M)=(:T,)x(M)

which proves that the p-part of x, (M) is the same as the p-part of xy (M), hence
independent of the choice of I". We call x, (M) the (p —) local component of
x (M) and the least common denominator of the numbers x,(M) (M an arbitrary
f.g. kT module) is called the (p —) local part of the (Goldie)-rank. Clearly the
rank divides the product of all local ranks.

Morover, we claim the Goldie rank is multiplicative, i.e.

Lemma 4. n(D)=ILn({,).

To prove this we use the following fact, proved in [6]. Let H be a subgroup of
T, let N be a finitely generated kH module, and let M = kI @.uN be the
induced kT module. Then x. (N) = xr(M). In other words, x is compatible with
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induction. It follows that the set of denominators in the (reduced) Euler
characteristics of kI, modules is also a set of denominators for kI" modules.
Hence r. (T’ ,,,)lr,c (I') and it is easily shown now that r.(I',) is just the p-part of
r (D).

Using the (non-trivial) result that r (I') =1 iff I' is torsion free we obtain:

CoroLLArY. Ifp Irk (I') then T has p-torsion (p is a prime).

Indeed by Lemma 4 p must divide r.(I',) so I, cannot be torsion free. But I,
can only have p-torsion.

Another proof of the Corollary, when char(k) =0, appears in [2].

Finally it should be mentioned that the Goldie rank defined here and the more
usual Goldie rank coincide when kT is prime, i.e., when I' has no non-trivial
finite normal subgroups [5, ch. 10). Again the reader is referred to [6] for details
and proof.
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