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REMARKS ON A PRINCIPLE 
OF LOCALIZATION 

BY 

SHMUEL ROSSET 

ABSTRACT 

We prove that the Brauer class of a crossed product is a sum of symbols iff its 
"local" components are. Analogously we show that a solution of the "Goldie 
rank conjecture" would follow from the "local" statements; an extension of a 
result of Cliff-Sehgal is an easy corollary. 

1. Let L D K be a finite galois extension of fields, G = GaI(L/K), and let 

[ :G • G---->L* be a (non-homogeneous) 2-cocycle. Let  A =(L/K,[)  be the 

crossed product defined by this situation [4]. It is a simple algebra with center K 

and dimension n 2 (n = I GI )  over K. As such it is isomorphic to an algebra of the 

type M,(D), where D is a division algebra over (i.e. with center) K. We call r the 

rank (or Goldie rank, denoted rk) and if (D : K)  = d 2 then d is the index. Note 

that the index of an algebra is an invariant of its Brauer class. The number 

(rank). (index) is called the degree. 

For each prime number p dividing n let Gp be a (fixed) p-sylow subgroup of G 

and Kp = L %, the fixed field under the action of Gp. Let [p be the restriction of f 

to Gp x Gp and let A e = (L/K e ;[p ). We call Ap the (p-) local component  of A. If 

the primary decomposition of [A] in B r K  is Ep[Dp], where De is a division 

algebra over K with deg(Dp) a power of p, we call De (or [De] ) the (p-) primary 

component  of A. (Note that the group operation in Br( .  ) is denoted by + .) 

It is obvious that [Ae] = res~p/K[A ]. Since Ke splits Dq for q ~  p we see that 

[Ap] = resKp/K[Dp]. 

Since cor .  res~/ r  = multiplication by (Kp : K) we see that [Dp ] is a multiple of 

corxp]r[Ap], by an integer prime to p. In particular they have the same index and 

since [Ae] = [De @rKe] and (p, (Kp :K))  = 1 this is also the index of [Ae]. Thus 

we can prove the following simple observation: 
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LEMMA 1. 

PROOF. (i) 

We can use 

LEMMA 2. 

[Ap] E Br(Kp) 

[71), then [A] 

(i) d =IIp/, index(Ap). (ii) r = II e rk(Ap). 

is proved above and (ii) is a trival consequence. 

[7] to show 

If  K contains a primitive n-th root of 1 (so char K ~  n) and each 
is a sum of cyclic algebra classes ("symbols" in the terminology of 

is a sum of cyclic algebras. 

PROOF. In [7] it is shown that under these assumptions the corestriction 

preserves sums of cyclic algebras. 

COROLLARY. If G is a group all of whose Sylow subgroups are cyclic, then any 
crossed product with group G (over a center containing a primitive I G I-th root of 
1) is a sum of cyclic algebras. 

This corollary was proved, quite differently, by Snider [8]. 

2. We now give a different proof of Lemma 1, a proof which generalizes to 

group rings of virtually polycyclic groups. 

Let X be a rational valued function on the category of finitely generated A 

modules which is additive, i.e., x (M)  = x(M')  + x(M") whenever 

O---~M'---~M---~M"---~O is exact ("Euler characteristic") and normalized by 

X (A) = 1. If N is a simple non-zero A module then every finitely generated A 
module is of the type N s and it follows from A ~ N '  (A = M,(D)) that X is 

unique and is defined by x ( N  s) = s/r. We can formulate this: 

LEMMA 3. The rank of a central simple algebra is the least common multiple of 
the denominators of the numbers x (M)  written in reduced form. 

We must show that the p-part of r is the number rp such that Ap - M,~ (D(p)). 

2. 'whe re  ' = ( G : G  o). The dimension of A over D(p) is easily seen to be rp no n~ 

The function on A modules defined by M ~ dimo(p)(M)/(r~, n'p) is additive and 

is 1 on A. Hence it is equal to X. Since the simple A 0 module has dimension rp 

over D(p)  we see that, in reduced form, the p part of the denominator of 

dimo(o)(M)/(r~" n'p) is, at most, r o. It remains to show that the p-part of r is 

precisely rp. For this it is enough to exhibit an A module M with x(M)  = 1/rp. 

Let Xp be the analogue of X for Ap, i.e., Xo is the unique function on Ap modules 

which is additive and is 1 on Ap. If V is an A o module the function ~p defined by 

q~(V) = x ( A  (~A~ V) is such a function, so q~ = X~- It follows that if V is a simple 

(non-zero) A.-module then 1/rp = xo(V)= x ( A  @A~ V), so we have exhibited 
the M with x ( M )  = 1/rp. 
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REMARK. Somewhat similar dimension computations appear in: Jacobson, 

Structure of Rings, Ch. VI. 

3. In this section we deal with virtually polycyclic groups (also called 

polycyclic-by-finite). These are groups which have a subgroup of finite index 

which is polycyclic. A general reference is Passman's book [5]. We will denote 

these groups by "VP-groups".  

A VP-group contains a normal poly-{infinite cyclic} (or poly-Z, for short) 

subgroup of finite index [5, p. 422]. The group ring, over a field k, of a poly-Z 

group has finite global homological dimension [5, p. 626] and every finitely 

generated projective module is stably free. In particular, and using the 

noetherianity of such group rings, every finitely generated module has a finite 

free resolution. 

Let F be a VP group, F' a poly-Z subgroup of finite index, and let k be a field. 

If M is a finitely generated k F module let M'  be M considered as a k F' module 

only. Let 0 ---, Fm ---> " �9 ---> F~ ---) F(, ---. M'  ---, 0 be a resolution of M'  over k F', 

where F, is free over kF'  of rank// .  We define xr(M) = (F:F ' )  -~" E( - 1)Jfj. This 

is independent of the resolution and of the choice of F'. It is an Euler 

characteristic, i.e., additive on exact sequences, and takes the value 1 on the free 

rank 1 module kF. We define the rank (or "Goldie rank") of F to be the least 

common multiple of the denominators of the numbers X (M) written in reduced 

form (M being an arbitrary finitely generated k F module). 

Assume now that F' is normal in F and let F/F' = G. For each prime number p 

let Gp be a p-sylow subgroup of G and Fp its inverse image in F. Let gp (M) be 

the Euler characteristic of M thought of as a F, module. Obviously 

x,(M) = ( r : r , ) x ( M )  

which proves that the p-part of xp(M) is the same as the p-part of x(M), hence 

independent of the choice of F'. We call Xp (M) the ( p - )  local component of 

x(M) and the least common denominator of the numbers xp(M) (M an arbitrary 

f.g. kF  module) is called the ( p - )  local part of the (Goldie)-rank. Clearly the 

rank divides the product of all local ranks. 

Morover, we claim the Goldie rank is multiplicative, i.e. 

LEMMA 4. rk (r) = Hp r~ (rp). 

To prove this we use the following fact, proved in [6]. Let H be a subgroup of 

F, let N be a finitely generated kH module, and let M = kF@kuN be the 

induced k F module. Then XH (N) = Xr (M). In other words, X is compatible with 
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induction. It follows that the set of denominators in the (reduced) Euler 

characteristics of k I'p modules is also a set of denominators for k F modules. 

Hence rk(Fp)lrk(F ) and it is easily shown now that rk(Fp) is just the p-part of 
rk(r). 

Using the (non-trivial) result that rk(F)= 1 itt F is torsion free we obtain: 

COROLLARY. I f  p I rk (F) then F has p-torsion (p is a prime). 

Indeed by Lemma 4 p must divide rk(Fp) so Fp cannot be torsion free. But Fp 

can only have p-torsion. 

Another proof of the Corollary, when char(k)= 0, appears in [2]. 

Finally it should be mentioned that the Goldie rank defined here and the more 

usual Goldie rank coincide when kF is prime, i.e., when F has no non-trivial 

finite normal subgroups [5, ch. 10]. Again the reader is referred to [6] for details 

and proof. 
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